Perpetual American options in incomplete markets: the infinitely divisible case
Vicky Henderson and
David Hobson
Quantitative Finance, 2008, vol. 8, issue 5, 461-469
Abstract:
We consider the exercise of a number of American options in an incomplete market. In this paper we are interested in the case where the options are infinitely divisible. We make the simplifying assumptions that the options have infinite maturity, and the holder has exponential utility. Our contribution is to solve this problem explicitly and we show that, except at the initial time when it may be advantageous to exercise a positive fraction of his holdings, it is never optimal for the holder to exercise a tranche of options. Instead, the process of option exercises is continuous; however, it is singular with respect to calendar time. Exercise takes place when the stock price reaches a convex boundary which we identify.
Keywords: Perpetual American options; Incomplete markets; Infinitely divisible (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680701400986 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:8:y:2008:i:5:p:461-469
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680701400986
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().