Least-squares Importance Sampling for Monte Carlo security pricing
Luca Capriotti
Quantitative Finance, 2008, vol. 8, issue 5, 485-497
Abstract:
We describe a simple Importance Sampling strategy for Monte Carlo simulations based on a least-squares optimization procedure. With several numerical examples, we show that such Least-squares Importance Sampling (LSIS) provides efficiency gains comparable to the state-of-the-art techniques, for problems that can be formulated in terms of the determination of the optimal mean of a multivariate Gaussian distribution. In addition, LSIS can be naturally applied to more general Importance Sampling densities and is particularly effective when the ability to adjust higher moments of the sampling distribution, or to deal with non-Gaussian or multi-modal densities, is critical to achieve variance reductions.
Keywords: Monte Carlo methods; Derivatives pricing; Financial derivatives; Financial engineering (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680701762435 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:8:y:2008:i:5:p:485-497
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680701762435
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().