Efficient factor GARCH models and factor-DCC models
Kun Zhang and
Laiwan Chan
Quantitative Finance, 2009, vol. 9, issue 1, 71-91
Abstract:
We report that, in the estimation of univariate GARCH or multivariate generalized orthogonal GARCH (GO-GARCH) models, maximizing the likelihood is equivalent to making the standardized residuals as independent as possible. Based on this, we propose three factor GARCH models in the framework of GO-GARCH: independent-factor GARCH exploits factors that are statistically as independent as possible; factors in best-factor GARCH have the largest autocorrelation in their squared values such that their volatilities could be forecast well by univariate GARCH; and factors in conditional-decorrelation GARCH are conditionally as uncorrelated as possible. A convenient two-step method for estimating these models is introduced. Since the extracted factors may still have weak conditional correlations, we further propose factor-DCC models as an extension to the above factor GARCH models with dynamic conditional correlation (DCC) modelling the remaining conditional correlations between factors. Experimental results for the Hong Kong stock market show that conditional-decorrelation GARCH and independent-factor GARCH have better generalization performance than the original GO-GARCH, and that conditional-decorrelation GARCH (among factor GARCH models) and its extension with DCC embedded (among factor-DCC models) behave best.
Keywords: Statistical learning theory; Statistical methods; Computational finance; Behavioural finance (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680802039840 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:9:y:2009:i:1:p:71-91
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680802039840
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().