An analytic approximation of the likelihood function for the Heston model volatility estimation problem
Amir Atiya () and
Steve Wall
Quantitative Finance, 2009, vol. 9, issue 3, 289-296
Abstract:
Estimating the volatility from the underlying asset price history for the discrete observations case is a challenging inference problem. Yet it has attracted much research interest due to the key role of volatility in many areas of finance. In this paper we consider the Heston stochastic volatility model and propose an accurate analytic approximation for the volatility likelihood function. The model is based on considering the joint probability density of the asset and the volatility, and integrating out past volatility variables. The likelihood simplifies to a product of T terms, where T is the length of the past history considered. An extension to the problem of fixed parameter estimation is also presented. Simulation results indicate the effectiveness and accuracy of the proposed method.
Keywords: Volatility; Volatility estimation; Heston model; Stochastic volatility; Particle filter (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680802595601 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:9:y:2009:i:3:p:289-296
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680802595601
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().