Robust portfolio selection under downside risk measures
Shushang Zhu,
Duan Li and
Shouyang Wang
Quantitative Finance, 2009, vol. 9, issue 7, 869-885
Abstract:
We investigate a robust version of the portfolio selection problem under a risk measure based on the lower-partial moment (LPM), where uncertainty exists in the underlying distribution. We demonstrate that the problem formulations for robust portfolio selection based on the worst-case LPMs of degree 0, 1 and 2 under various structures of uncertainty can be cast as mathematically tractable optimization problems, such as linear programs, second-order cone programs or semidefinite programs. We perform extensive numerical studies using real market data to reveal important properties of several aspects of robust portfolio selection. We can conclude from our results that robustness does not necessarily imply a conservative policy and is indeed indispensable and valuable in portfolio selection.
Keywords: Portfolio selection; Downside risk; Lower-partial moment; Robust optimization (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680902852746 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:9:y:2009:i:7:p:869-885
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680902852746
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().