EconPapers    
Economics at your fingertips  
 

Spatiotemporal Data-Adaptive Clustering Algorithm: An Intelligent Computational Technique for City Big Data

Geonhwa You

Annals of the American Association of Geographers, 2022, vol. 112, issue 2, 602-619

Abstract: The emerging paradigm of the modern city demands big data analytics in urban studies. Data mining techniques for big data have the potential to ascertain strategic insights for current and future cities. Clustering is increasingly growing in data mining, serving as a knowledge discovery tool. This article proposes a spatiotemporal clustering method, called spatiotemporal data-adaptive clustering (STDAC), to cope with clustering challenges, such as feature type, parameter setting, and treating spatial and temporal dimensions as equals. The proposed algorithm takes a dual-structure approach to obtain high-quality clusters and discover temporal changes not detected by other techniques. STDAC refers to the feature type and uses k-fold cross-validation (KCV) to replace the user-defined parameters with the data-driven values. The data-driven threshold from KCV performs as the endogenous variable, thus not requiring a priori assumptions or parameter settings. This article used the bus, taxi passengers, and de facto population data as illustrative case studies. The clustering performances were evaluated based on validation indexes, such as the Davies–Bouldin index (DBI) and Dunn index (DI), where STDAC generally had lower DBI and greater DI. The findings showed that STDAC could yield better clustering performances than other established algorithms. Hence, the proposed method would be promising to future studies requiring spatiotemporal big data analytics in urban studies, administrative management, and other fields.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24694452.2021.1935207 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:raagxx:v:112:y:2022:i:2:p:602-619

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/raag21

DOI: 10.1080/24694452.2021.1935207

Access Statistics for this article

Annals of the American Association of Geographers is currently edited by Jennifer Cassidento

More articles in Annals of the American Association of Geographers from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:raagxx:v:112:y:2022:i:2:p:602-619