Sleeping Lion or Sick Man? Machine Learning Approaches to Deciphering Heterogeneous Images of Chinese in North America
Qiang Fu,
Yufan Zhuang,
Yushu Zhu and
Xin Guo
Annals of the American Association of Geographers, 2022, vol. 112, issue 7, 2045-2063
Abstract:
Based on more than 280,000 newspaper articles published in North America, this study proposes an integrative machine learning framework to explore heterogeneous social sentiments over time. After retrieving and preprocessing articles containing the term “Chinese” from six mainstream newspapers, we identified major discussion topics and assigned articles to their corresponding topics via posterior probabilities estimated by using a novel Bayesian nonparametric model, the hierarchical Dirichlet process. We also employed a groundbreaking deep learning technique, bidirectional encoder representations from transformers, to assign a negative or positive sentiment score to each newspaper article, which was trained on binary-labeled movie reviews from the Internet Movie Database (IMDb). By combining state-of-the-art tools for topic modeling and sentiment analysis, we found an overall lack of consensus on whether sentiments in North America since 1978 were pro- or anti-Chinese. Moreover, the images of Chinese are highly topic specific: (1) sentiments across different topics show distinct trajectories over the period of study; (2) discussion topics explain much more of the variation in sentiments than do the publisher, year of publication, or country of publisher; (3) less positive sentiments appear to be more relevant to material concerns than to ethnic considerations, whereas more positive sentiments are associated with an appreciation of culture; and (4) sentiments on the same or similar topic might exhibit different temporal patterns in the United States and Canada. These new findings not only suggest a multifaceted and dynamic view of social sentiments in a transnational context but also call for a paradigm shift in understanding intertwined sociodiscursive interactions over time.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24694452.2022.2042180 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:raagxx:v:112:y:2022:i:7:p:2045-2063
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/raag21
DOI: 10.1080/24694452.2022.2042180
Access Statistics for this article
Annals of the American Association of Geographers is currently edited by Jennifer Cassidento
More articles in Annals of the American Association of Geographers from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().