Exploring Multiscale Spatial Interactions: Multiscale Geographically Weighted Negative Binomial Regression
Hanchen Yu
Annals of the American Association of Geographers, 2024, vol. 114, issue 3, 574-590
Abstract:
In this article, I develop and implement the multiscale geographically weighted negative binomial (MGWNB) model, extending the spatially weighted interaction models by integrating a multiscale framework. This model effectively tackles the multiscale nonstationarity and overdispersion issues found in spatial interaction models. By comparing it with multiscale geographically weighted Poisson regression using simulated data, I demonstrate its superior performance in several aspects, including its capability to estimate the scale of processes, its effectiveness in capturing the spatial heterogeneity, and its ability to produce a better goodness of fit. The application of MGWNB in interprovincial population migration in China, using 2020 Chinese census data, also demonstrates its effectiveness and efficiency, revealing strong multiscale spatial heterogeneity in the migration patterns.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24694452.2023.2289986 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:raagxx:v:114:y:2024:i:3:p:574-590
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/raag21
DOI: 10.1080/24694452.2023.2289986
Access Statistics for this article
Annals of the American Association of Geographers is currently edited by Jennifer Cassidento
More articles in Annals of the American Association of Geographers from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().