EconPapers    
Economics at your fingertips  
 

Machine learning for characterizing growth in tourism employment in developing economies: an assessment of tourism employment in Sri Lanka

Tasadduq Imam and Jayanath Ananda

Current Issues in Tourism, 2022, vol. 25, issue 16, 2695-2716

Abstract: Understanding the influence of tourism-linked factors on direct and indirect employment is important for tourism planning, particularly for tourism-dependent developing economies. Yet, related studies on developing countries are scant. This research considers trends of tourism growth in Sri Lanka over 1972–2018 using state-of-the-art machine learning methods: Classification and Regression Tree (CART), Boruta, hyperparameter tuning, grid search, novel robustness check strategies, and Random Forest. Our analysis confirmed that the growth in both direct and indirect tourism employment in Sri Lanka is influenced by three factors – total tourist arrivals, tourism receipts, and arrivals in the last quarter. The findings also reveal a notable seasonality impact on tourism employment, especially the growth of arrivals during the fourth quarter, for the country. Random Forest models suggest that an increase of tourist arrivals during the fourth quarter can largely compensate any detrimental impact on the growth of direct and indirect employment from a decrease in total tourist arrivals and tourism receipts. Overall, the article demonstrates that a systematic combination of machine learning approaches can provide rich insights from macro-level tourism statistics reported by tourism authorities, which in turn can guide policy formulation to boost tourism in the post-COVID-19 era.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13683500.2021.1991895 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:rcitxx:v:25:y:2022:i:16:p:2695-2716

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/rcit20

DOI: 10.1080/13683500.2021.1991895

Access Statistics for this article

Current Issues in Tourism is currently edited by Jennifer Tunstall

More articles in Current Issues in Tourism from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:rcitxx:v:25:y:2022:i:16:p:2695-2716