Determine OWA operator weights using kernel density estimation
Mingwei Lin,
Wenshu Xu,
Zhanpeng Lin and
Riqing Chen
Economic Research-Ekonomska Istraživanja, 2020, vol. 33, issue 1, 1441-1464
Abstract:
Some subjective methods should divide input values into local clusters before determining the ordered weighted averaging (OWA) operator weights based on the data distribution characteristics of input values. However, the process of clustering input values is complex. In this paper, a novel probability density based OWA (PDOWA) operator is put forward based on the data distribution characteristics of input values. To capture the local cluster structures of input values, the kernel density estimation (KDE) is used to estimate the probability density function (PDF), which fits to the input values. The derived PDF contains the density information of input values, which reflects the importance of input values. Therefore, the input values with high probability densities (PDs) should be assigned with large weights, while the ones with low PDs should be assigned with small weights. Afterwards, the desirable properties of the proposed PDOWA operator are investigated. Finally, the proposed PDOWA operator is applied to handle the multicriteria decision making problem concerning the evaluation of smart phones and it is compared with some existing OWA operators. The comparative analysis shows that the proposed PDOWA operator is simpler and more efficient than the existing OWA operators.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/1331677X.2020.1748509 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:reroxx:v:33:y:2020:i:1:p:1441-1464
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/rero20
DOI: 10.1080/1331677X.2020.1748509
Access Statistics for this article
Economic Research-Ekonomska Istraživanja is currently edited by Marinko Skare
More articles in Economic Research-Ekonomska Istraživanja from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().