The moments of the Gompertz distribution and maximum likelihood estimation of its parameters
Adam Lenart
Scandinavian Actuarial Journal, 2014, vol. 2014, issue 3, 255-277
Abstract:
The Gompertz distribution is widely used to describe the distribution of adult deaths. Previous works concentrated on formulating approximate relationships to characterise it. However, using the generalised integro-exponential function, exact formulas can be derived for its moment-generating function and central moments. Based on the exact central moments, higher accuracy approximations can be defined for them. In demographic or actuarial applications, maximum likelihood estimation is often used to determine the parameters of the Gompertz distribution. By solving the maximum likelihood estimates analytically, the dimension of the optimisation problem can be reduced to one both in the case of discrete and continuous data. Monte Carlo experiments show that by ML estimation, higher accuracy estimates can be acquired than by the method of moments.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2012.687697 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2014:y:2014:i:3:p:255-277
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20
DOI: 10.1080/03461238.2012.687697
Access Statistics for this article
Scandinavian Actuarial Journal is currently edited by Boualem Djehiche
More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().