EconPapers    
Economics at your fingertips  
 

Ordered random vectors and equality in distribution

Ka Chun Cheung, Jan Dhaene, Alexander Kukush and Daniël Linders

Scandinavian Actuarial Journal, 2015, vol. 2015, issue 3, 221-244

Abstract: In this paper we show that under appropriate moment conditions, the supermodular ordered random vectors X¯=(X1,X2,…,Xn)$ \underline{X}=\left( X_{1},X_{2},\ldots ,X_{n}\right) $ and Y¯=(Y1,Y2,…,Yn)$ \underline{Y}=\left( Y_{1},Y_{2},\ldots ,Y_{n}\right) $ with equal expected utilities (or distorted expectations) of the sums X1+X2+…+Xn$ X_{1}+X_{2}+\ldots +X_{n} $ and Y1+Y2+…+Yn$ Y_{1}+Y_{2}+\ldots +Y_{n} $ for an appropriate utility (or distortion) function, must necessarily be equal in distribution, that is X¯=dY¯$ \underline{X}\overset{\text{ d}}{=}\underline{Y} $. The results in this paper can be considered as generalizations of some recent results on comonotonicity, where necessary conditions related to the distribution of X1+Xn+…+Xn$ X_1 + X_n+ \ldots + X_n $ are presented for the random vector X¯=(X1,X2,…,Xn)$ \underline{X}=(X_1, X_2,\ldots ,X_n) $ to be comonotonic.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2013.807470 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2015:y:2015:i:3:p:221-244

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20

DOI: 10.1080/03461238.2013.807470

Access Statistics for this article

Scandinavian Actuarial Journal is currently edited by Boualem Djehiche

More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:sactxx:v:2015:y:2015:i:3:p:221-244