EconPapers    
Economics at your fingertips  
 

Randomly weighted sums of dependent subexponential random variables with applications to risk theory

Fengyang Cheng and Dongya Cheng

Scandinavian Actuarial Journal, 2018, vol. 2018, issue 3, 191-202

Abstract: For any fixed integer n≥1$ n \ge 1 $, let X1,…,Xn$ X_1,\ldots ,X_n $ be real-valued random variables with a common subexponential distribution, and let θ1,…,θn$ \theta _1,\ldots ,\theta _n $ be positive random variables which are bounded above and independent of X1,…,Xn$ X_1,\ldots ,X_n $. Under some rather loose conditional dependence assumptions on the primary random variables X1,…,Xn$ X_1,\ldots ,X_n $, this paper proves that the asymptotic relationsP∑i=1nθiXi>x∼Pmax1≤m≤n∑i=1mθiXi>x∼Pmax1≤i≤nθiXi>x∼∑i=1nPθiXi>x$$ \begin{aligned} P\left(\sum _{i=1}^n \theta _iX_i >x\right)&\sim P\left( \max _{1\le m\le n}\sum _{i=1}^m \theta _iX_i>x\right)\sim P\left(\max _{1\le i\le n}\theta _iX_i>x\right)\\&\sim \sum _{i=1}^n {P\left( \theta _iX_i>x\right)} \end{aligned} $$hold as x→∞$ x\rightarrow \infty $, where θ1,…,θn$ \theta _1,\ldots ,\theta _n $ are arbitrarily dependent. In particular, it is shown that the above results hold true for X1,…,Xn$ X_1,\ldots ,X_n $ with certain Samarnov distributions. The obtained results on randomly weighted sums are applied to estimating the finite-time ruin probability in a discrete-time risk model with both insurance and financial risks.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2017.1329160 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2018:y:2018:i:3:p:191-202

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20

DOI: 10.1080/03461238.2017.1329160

Access Statistics for this article

Scandinavian Actuarial Journal is currently edited by Boualem Djehiche

More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:sactxx:v:2018:y:2018:i:3:p:191-202