Dirichlet process mixture models for insurance loss data
Liang Hong and
Ryan Martin
Scandinavian Actuarial Journal, 2018, vol. 2018, issue 6, 545-554
Abstract:
In the recent insurance literature, a variety of finite-dimensional parametric models have been proposed for analyzing the hump-shaped, heavy-tailed, and highly skewed loss data often encountered in applications. These parametric models are relatively simple, but they lack flexibility in the sense that an actuary analyzing a new data-set cannot be sure that any one of these parametric models will be appropriate. As a consequence, the actuary must make a non-trivial choice among a collection of candidate models, putting him/herself at risk for various model misspecification biases. In this paper, we argue that, at least in cases where prediction of future insurance losses is the ultimate goal, there is reason to consider a single but more flexible nonparametric model. We focus here on Dirichlet process mixture models, and we reanalyze several of the standard insurance data-sets to support our claim that model misspecification biases can be avoided by taking a nonparametric approach, with little to no cost, compared to existing parametric approaches.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2017.1402086 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2018:y:2018:i:6:p:545-554
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20
DOI: 10.1080/03461238.2017.1402086
Access Statistics for this article
Scandinavian Actuarial Journal is currently edited by Boualem Djehiche
More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().