A constraint-free approach to optimal reinsurance
Hans U. Gerber,
Elias S.W. Shiu and
Hailiang Yang
Scandinavian Actuarial Journal, 2019, vol. 2019, issue 1, 62-79
Abstract:
Reinsurance is available for a reinsurance premium that is determined according to a convex premium principle H. The first insurer selects the reinsurance coverage that maximizes its expected utility. No conditions are imposed on the reinsurer's payment. The optimality condition involves the gradient of H. For several combinations of H and the first insurer's utility function, closed-form formulas for the optimal reinsurance are given. If H is a zero utility principle (for example, an exponential principle or an expectile principle), it is shown, by means of Borch's Theorem, that the optimal reinsurer's payment is a function of the total claim amount and that this function satisfies the so-called 1-Lipschitz condition. Frequently, authors impose these two conclusions as hypotheses at the outset.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2018.1488272 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2019:y:2019:i:1:p:62-79
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20
DOI: 10.1080/03461238.2018.1488272
Access Statistics for this article
Scandinavian Actuarial Journal is currently edited by Boualem Djehiche
More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().