The maximum entropy mortality model: forecasting mortality using statistical moments
Marius D. Pascariu,
Adam Lenart and
Vladimir Canudas-Romo
Scandinavian Actuarial Journal, 2019, vol. 2019, issue 8, 661-685
Abstract:
The age-at-death distribution is a representation of the mortality experience in a population. Although it proves to be highly informative, it is often neglected when it comes to the practice of past or future mortality assessment. We propose an innovative method to mortality modeling and forecasting by making use of the location and shape measures of a density function, i.e. statistical moments. Time series methods for extrapolating a limited number of moments are used and then the reconstruction of the future age-at-death distribution is performed. The predictive power of the method seems to be net superior when compared to the results obtained using classical approaches to extrapolating age-specific-death rates, and the accuracy of the point forecast (MASE) is improved on average by 33% respective to the state-of-the-art, the Lee–Carter model. The method is tested using data from the Human Mortality Database and implemented in a publicly available R package.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2019.1596974 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2019:y:2019:i:8:p:661-685
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20
DOI: 10.1080/03461238.2019.1596974
Access Statistics for this article
Scandinavian Actuarial Journal is currently edited by Boualem Djehiche
More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().