Neural network embedding of the over-dispersed Poisson reserving model
Andrea Gabrielli,
Ronald Richman and
Mario V. Wüthrich
Scandinavian Actuarial Journal, 2020, vol. 2020, issue 1, 1-29
Abstract:
The main idea of this paper is to embed a classical actuarial regression model into a neural network architecture. This nesting allows us to learn model structure beyond the classical actuarial regression model if we use as starting point of the neural network calibration exactly the classical actuarial model. Such models can be fitted efficiently which allows us to explore bootstrap methods for prediction uncertainty. As an explicit example, we consider the cross-classified over-dispersed Poisson model for general insurance claims reserving. We demonstrate how this model can be improved by neural network features.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03461238.2019.1633394 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2020:y:2020:i:1:p:1-29
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20
DOI: 10.1080/03461238.2019.1633394
Access Statistics for this article
Scandinavian Actuarial Journal is currently edited by Boualem Djehiche
More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().