Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients
Hongjie Wei and
Yan Sun
Spatial Economic Analysis, 2017, vol. 12, issue 1, 113-128
Abstract:
Heteroskedasticity-robust semi-parametric GMM estimation of a spatial model with space-varying coefficients. Spatial Economic Analysis. The spatial model with space-varying coefficients proposed by Sun et al. in 2014 has proved to be useful in detecting the location effects of the impacts of covariates as well as spatial interaction in empirical analysis. However, Sun et al.’s estimator is inconsistent when heteroskedasticity is present – a circumstance that is more realistic in certain applications. In this study, we propose a kind of semi-parametric generalized method of moments (GMM) estimator that is not only heteroskedasticity robust but also takes a closed form written explicitly in terms of observed data. We derive the asymptotic distributions of our estimators. Moreover, the results of Monte Carlo experiments show that the proposed estimators perform well in finite samples.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/17421772.2017.1250940 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:specan:v:12:y:2017:i:1:p:113-128
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RSEA20
DOI: 10.1080/17421772.2017.1250940
Access Statistics for this article
Spatial Economic Analysis is currently edited by Bernie Fingleton and Danilo Igliori
More articles in Spatial Economic Analysis from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().