Near Unit Root in the Spatial Autoregressive Model
Lung-Fei Lee and
Jihai Yu ()
Spatial Economic Analysis, 2013, vol. 8, issue 3, 314-351
Abstract:
This paper studies the spatial autoregressive (SAR) model for cross-sectional data when the coefficient of the spatial lag of the dependent variable is near unity. We decompose the data generating process into an unstable component and a stable one, and establish asymptotic properties of QMLE, 2SLSE and linearized QMLE of the parameters. The estimator for the spatial effect has a higher rate of convergence, and the estimators for other parameters have the regular rate. The higher rate of convergence reflects how fast the spatial root converges to unity. In contrast to near unit root in time series, the estimators are all asymptotically normal. Similarly to the regular SAR model, QMLE and linearized QMLE are more efficient than 2SLSE.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1080/17421772.2012.760134 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:specan:v:8:y:2013:i:3:p:314-351
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RSEA20
DOI: 10.1080/17421772.2012.760134
Access Statistics for this article
Spatial Economic Analysis is currently edited by Bernie Fingleton and Danilo Igliori
More articles in Spatial Economic Analysis from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().