Empirical Hierarchical Modelling for Count Data using the Spatial Random Effects Model
Aritra Sengupta and
Noel Cressie
Spatial Economic Analysis, 2013, vol. 8, issue 3, 389-418
Abstract:
Count data over spatial lattices are the building blocks of spatial econometric data (e.g. unemployment rates in small areas). We consider a hierarchical statistical model made up of a Poisson model for the counts and an underlying Spatial Random Effects process for the logarithm of the mean of the Poisson distribution. The resulting dimension reduction leads to substantial computational speed-ups. These models make no assumptions of homogeneity, stationarity, or isotropy. We develop maximum-likelihood estimates (MLEs) for the parameters of the underlying process using an EM algorithm, and we predict unknown mean counts over the entire spatial lattice.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/17421772.2012.760135 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:specan:v:8:y:2013:i:3:p:389-418
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RSEA20
DOI: 10.1080/17421772.2012.760135
Access Statistics for this article
Spatial Economic Analysis is currently edited by Bernie Fingleton and Danilo Igliori
More articles in Spatial Economic Analysis from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().