Sentiment mining in a collaborative learning environment: capitalising on big data
R. K. Jena
Behaviour and Information Technology, 2019, vol. 38, issue 9, 986-1001
Abstract:
The ability to exploit students’ sentiments using different machine learning techniques is considered an important strategy for planning and manoeuvring in a collaborative educational environment. The advancement of machine learning technology is energised by the healthy growth of big data technologies. This helps the applications based on Sentiment Mining (SM) using big data to become a common platform for data mining activities. However, very little has been studied on the sentiment application using a huge amount of available educational data. Therefore, this paper has made an attempt to mine the academic data using different efficient machine learning algorithms. The contribution of this paper is two-fold: (i) studying the sentiment polarity (positive, negative and neutral) from students’ data using machine learning techniques, and (ii) modelling and predicting students’ emotions (Amused, Anxiety, Bored, Confused, Enthused, Excited, Frustrated, etc.) using the big data frameworks. The developed SM techniques using big data frameworks can be scaled and made adaptable for source variation, velocity and veracity to maximise value mining for the benefit of students, faculties and other stakeholders.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/0144929X.2019.1625440 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tbitxx:v:38:y:2019:i:9:p:986-1001
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tbit20
DOI: 10.1080/0144929X.2019.1625440
Access Statistics for this article
Behaviour and Information Technology is currently edited by Dr Panos P Markopoulos
More articles in Behaviour and Information Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().