Mapping Twitter hate speech towards social and sexual minorities: a lexicon-based approach to semantic content analysis
Vittorio Lingiardi,
Nicola Carone,
Giovanni Semeraro,
Cataldo Musto,
Marilisa D’Amico and
Silvia Brena
Behaviour and Information Technology, 2020, vol. 39, issue 7, 711-721
Abstract:
Though there are currently no statistics offering a global overview of online hate speech, both social networking platforms and organisations that combat hate speech have recognised that prevention strategies are needed to address this negative online phenomenon. While most cases of online hate speech target individuals on the basis of ethnicity and nationality, incitements to hatred on the basis of religion, class, gender and sexual orientation are increasing. This paper reports the findings of the ‘Italian Hate Map’ project, which used a lexicon-based method of semantic content analysis to extract 2,659,879 Tweets (from 879,428 Twitter profiles) over a period of 7 months; 412,716 of these Tweets contained negative terms directed at one of the six target groups. In the geolocalized Tweets, women were the most insulted group, having received 71,006 hateful Tweets (60.4% of the negative geolocalized tweets), followed by immigrants (12,281 tweets, 10.4%), gay and lesbian persons (12,140 tweets, 10.3%), Muslims (7,465 tweets, 6.4%), Jews (7,465 tweets, 6.4%) and disabled persons (7,230 tweets, 6.1%). The findings provide a real-time snapshot of community behaviours and attitudes against social, ethnic, sexual and gender minority groups that can be used to inform intolerance prevention campaigns on both local and national levels.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/0144929X.2019.1607903 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tbitxx:v:39:y:2020:i:7:p:711-721
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tbit20
DOI: 10.1080/0144929X.2019.1607903
Access Statistics for this article
Behaviour and Information Technology is currently edited by Dr Panos P Markopoulos
More articles in Behaviour and Information Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().