Dropout management in online learning systems
Rupanwita Dash,
Kumar Rakesh Ranjan and
Alexander Rossmann
Behaviour and Information Technology, 2022, vol. 41, issue 9, 1973-1987
Abstract:
We examine the role of communication from users on dropout from digital learning systems to answer the following questions: (1) how does the sentiment within qualitative signals (user comments) affect dropout rates? (2) does the variance in the proportion of positive and negative sentiments affect dropout rates? (3) how do quantitative signals (e.g. likes) moderate the effect of the qualitative signals? and (4) how does the effect of qualitative signals on dropout rates change across early and late stages of learning? Our hypotheses draws from learning theory and self-regulation theory, and were tested using data of 447 learning videos across 32 series of online tutorials, spanning 12 different fields of learning. The findings indicate a main effect of negative sentiment on dropout rates but no effect of positive sentiment on preventing dropout behaviour. This main effect is stronger in the early stages of learning and weakens at later stages. We also observe an effect of the extent of variance of positive and negative sentiments on dropout behaviour. The effects are negatively moderated by quantitative signals. Overall, making commenting more broad-based rather than polarised can be a useful strategy in managing learning, transferring knowledge, and building consensus.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/0144929X.2021.1910730 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tbitxx:v:41:y:2022:i:9:p:1973-1987
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tbit20
DOI: 10.1080/0144929X.2021.1910730
Access Statistics for this article
Behaviour and Information Technology is currently edited by Dr Panos P Markopoulos
More articles in Behaviour and Information Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().