Explaining crowdworker behaviour through computational rationality
Michael A. Hedderich and
Antti Oulasvirta
Behaviour and Information Technology, 2025, vol. 44, issue 3, 552-573
Abstract:
Crowdsourcing has transformed whole industries by enabling the collection of human input at scale. Attracting high quality responses remains a challenge, however. Several factors affect which tasks a crowdworker chooses, how carefully they respond, and whether they cheat. In this work, we integrate many such factors into a simulation model of crowdworker behaviour rooted in the theory of computational rationality. The root assumption is that crowdworkers are rational and choose to behave in a way that maximises their expected subjective payoffs. The model captures two levels of decisions: (i) a worker's choice among multiple tasks and (ii) how much effort to put into a task. We formulate the worker's decision problem and use deep reinforcement learning to predict worker behaviour in realistic crowdworking scenarios. We examine predictions against empirical findings on the effects of task design and show that the model successfully predicts adaptive worker behaviour with regard to different aspects of task participation, cheating, and task-switching. To support explaining crowdworker actions and other choice behaviour, we make our model publicly available.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/0144929X.2024.2329616 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tbitxx:v:44:y:2025:i:3:p:552-573
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tbit20
DOI: 10.1080/0144929X.2024.2329616
Access Statistics for this article
Behaviour and Information Technology is currently edited by Dr Panos P Markopoulos
More articles in Behaviour and Information Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().