Investigation of microwave metamaterial based on H-shaped resonator in a waveguide configuration and its sensor and absorber applications
Cumali Sabah,
Mehmet Mert Taygur and
Emine Yesim Zoral
Journal of Electromagnetic Waves and Applications, 2015, vol. 29, issue 6, 819-831
Abstract:
A microwave metamaterial (MTM) based on H-shaped resonator in a waveguide configuration is introduced and investigated both numerically and experimentally for X-band frequencies. The proposed model is designed and fabricated on both sides of the substrate and exhibits strong magnetic resonance at around 10.5 GHz. Additionally, it has very simple design which improves and simplifies the fabrication process. Besides, only one single slab is used in the simulation and experiment which provides a reduction in the number of the required samples with respect to its free space and/or waveguide counterparts. The effective medium theory is employed for the characterization of the structure, and the left-handed region is identified using the simulation and experimental data. The measured results are in good agreement with the simulated ones which show that the proposed MTM operates well and can be used in waveguide miniaturization and waveguide-based applications such as antennas, filters, sensors, imaging systems, and so on. To validate this, sensor and absorber applications are selected and the simulation results show that the proposed devices operate well with a good efficiency under the defined conditions.
Date: 2015
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2015.1025916 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:29:y:2015:i:6:p:819-831
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2015.1025916
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().