A technique for handling multiscale electromagnetic problems using the finite difference time domain (FDTD) algorithm
Kadappan Panayappan and
Raj Mittra
Journal of Electromagnetic Waves and Applications, 2016, vol. 30, issue 10, 1241-1264
Abstract:
With advances in system integration and packaging, the capabilities of hand-held devices and embedded bio-sensors have grown to a phenomenal scale. This in turn has led to a constant interaction between human beings and ambient electromagnetic waves. Hence there is a need for studying the effects of radiation on human physiology and also the performance of systems in such an environment. The system designers seek a full-wave solution of the entire system, taking into account a variety of environments in which it operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi-scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique finite difference time domain and the frequency domain techniques, e.g. the finite element method and the method of moments, are often challenged to the limits of their capabilities. In an attempt to address these challenges, we propose to handle the multiscale problems in three different ways, based on the dimension and the complexity of the fine features involved in the problem. Furthermore, we illustrate the efficacy of the above techniques via several examples, and the results obtained by the proposed techniques are compared with other existing numerical methods for the purpose of validation.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2016.1194235 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:30:y:2016:i:10:p:1241-1264
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2016.1194235
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().