Investigation on improved water-loaded diagonal horn applicators for hyperthermia
Soni Singh and
S. P. Singh
Journal of Electromagnetic Waves and Applications, 2016, vol. 30, issue 14, 1836-1857
Abstract:
This paper describes simulation, theoretical, and/or experimental studies of specific absorption rate (SAR) distribution in biological phantom (muscle)/tri-layered bio-media without and with irregular-shaped tumors in direct contact with improved water-loaded metal diagonal horns designed at 2450 and 915 MHz. Further, thermal simulation results based on Pennes’ bio-heat equation are also provided for each of the proposed applicators, which is in direct contact with realistic tri-layered bio-media without and with irregular-shaped tumor embedded within the muscle layer. The proposed horns are improved versions of the respective conventional metal diagonal horns in which the aperture fields, which are modified by introducing four conducting pins at appropriate locations near each antenna aperture, correspond to fundamental and higher order modes. The theoretical aperture field distributions of the proposed horns designed at 2450 and 915 MHz are compared with the corresponding simulated ones. Further, the theoretical SAR parameters (penetration depth (PD) and effective field size (EFS)) in the phantom muscle medium due to the proposed horns designed at 2450 and 915 MHz are compared with the corresponding simulated and/or experimental results as well as with those obtained due to the corresponding conventional horns of identical dimensions. Moreover, effects on PD, EFS/EFS25, and temperature distribution profiles due to presence of irregular-shaped tumor in the tri-layered bio-media at 2450 and 915 MHz are also investigated. It is demonstrated that desired temperature range 41–45 °C can be achieved and maintained for 60 min with input power of 4/10 W at the frequencies of 2450/915 MHz for treating superficial tumors.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2016.1216808 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:30:y:2016:i:14:p:1836-1857
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2016.1216808
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().