EconPapers    
Economics at your fingertips  
 

Detection of the gas–liquid two-phase flow regimes using non-intrusive microwave cylindrical cavity sensor

Cheen Sean Oon, Muhammad Ateeq, Andy Shaw, Stephen Wylie, Ahmed Al-Shamma’a and Salim Newaz Kazi

Journal of Electromagnetic Waves and Applications, 2016, vol. 30, issue 17, 2241-2255

Abstract: Gas–liquid two-phase flow phenomenon occurs in various engineering applications and the measurement of it is important. A microwave sensor in the form of a cylindrical cavity has been designed to operate between 5 and 5.7 GHz. The aim is to analyse a two phase gas–liquid flow regime in a pipeline. LabVIEW software is utilised to capture the data, process them and display the results in real time. The results have shown that the microwave sensor has successfully detected the two-phase flow regimes in both the static and dynamic flow environments with reasonable accuracy. The study has also shown the independence of the technique and its accuracy to the temperature change (28–83 °C). Several flow regimes of the gas–liquid two-phase flow have been discussed. The system is also able to detect the stratified, wavy, elongated bubbles and homogeneous flow regimes.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2016.1244019 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:30:y:2016:i:17:p:2241-2255

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20

DOI: 10.1080/09205071.2016.1244019

Access Statistics for this article

Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury

More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tewaxx:v:30:y:2016:i:17:p:2241-2255