Spiraphase-type leaky-wave structure
Daniel Seseña-Martinez,
Jorge Rodriguez-Cuevas,
Jose I. Martinez-Lopez and
Alexander E. Martynyuk
Journal of Electromagnetic Waves and Applications, 2017, vol. 31, issue 6, 561-576
Abstract:
A leaky-wave structure (LWS) based on two stacked spiraphase-type reflectarrays (RAs) is analysed in this paper. Each RA contains capacitively loaded ring slot elements arranged at the nodes of a square periodic grid. The proposed LWS performs frequency scanning of a conical beam by changing the cone aperture angle 2θ0. Furthermore, the reconfiguration of the radiation pattern can be achieved by rotating the RA elements. Four Ka-band LWSs with different angular positions of the capacitive loads at the top RA were designed, fabricated and tested to demonstrate the pattern reconfiguration capability. A full-wave mathematical model was used to optimize the reflectarray elements and a simplified mathematical model was developed to predict the radiation characteristics of the whole structure. It was experimentally proven that frequency sweep from 36.37 to 39.9 GHz leads to the change of the angle θ0 from 0° to 38°. The increment of θ0 from 0° to 23° at 36.4 GHz was observed, when the reactive loads of the ring-slot elements at the top RA were rotated on the angle 18°. Good agreement between theoretical predictions and measurements was observed.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2017.1296788 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:31:y:2017:i:6:p:561-576
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2017.1296788
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().