A dual-band high-gain microstrip antenna with a defective frequency selective surface for wireless applications
Arun Kumar,
Santanu Dwari and
Ganga Prasad Pandey
Journal of Electromagnetic Waves and Applications, 2021, vol. 35, issue 12, 1637-1651
Abstract:
A dual-band high-gain linearly polarized antenna for wideband operation using a defective frequency selective surface (DFSS) is proposed and demonstrated experimentally. The designed antenna consists of radiating patch, truncated ground with a half-inverted L-shaped rectangular ring and frequency selective surface (FSS) with a defective ground plane. The dimensions are optimized to achieve dual band with a 10-dB impedance bandwidth of 7.72% from 2.37 to 2.56 GHz and 46.75% from 4.60 to 7.41 GHz. The antenna gain is enhanced by 8.8 dBi at lower band and 4.5 dBi at upper wideband. The maximum gain achieved using this technique is 8.8 dBi at 2.4 GHz. The measured and simulated results of the proposed antenna are well-matched in terms of gain, reflection coefficient (S11) and radiation patterns. The Proposed antenna is easy to implement, low cost, low profile and can be used in wireless services like Wi-Fi, Wi-MAX and C band applications.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2021.1914195 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:35:y:2021:i:12:p:1637-1651
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2021.1914195
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().