Miniaturized quad-band bandpass filter using quad-mode stepped impedance resonator
Shichao Jin,
Kaijun Song and
Xueyuan Ding
Journal of Electromagnetic Waves and Applications, 2023, vol. 37, issue 17, 1480-1494
Abstract:
A miniaturized quad-band bandpass filter (BPF) using compact quad-mode stepped impedance resonator (IQMSIR) is proposed. Based on the symmetric presented by the resonator, four modes are deduced using even-and odd-mode technique. Design formulas are also derived and they are used to guide the filter design. Multiple coupling circuit technique is employed to realize the four passbands. Independent design for four passbands are achieved due to the physical dimensions and additional cross slots. Upper stopband is performed by adding open loop SIR at I/O ports. Transmission zeros among each passbands are generated, resulting in high isolation and selectivity. A quad-band filter is designed, fabricated and measured. The operating central frequencies of the fabricated filter are at 2.54/3.36/5.24/6.6 GHz. The measured 3-dB fractional bandwidths of the four passbands are about 3.9/6.4/4/4.6% and the minimum insertion losses are about 2.3/0.89/3.2/2.3 dB. Measurements correlate well with the simulation results.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2023.2251956 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:37:y:2023:i:17:p:1480-1494
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2023.2251956
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().