EconPapers    
Economics at your fingertips  
 

When and how to adjust statistical forecasts in supply chains? Insight from causal machine learning

Budhi S. Wibowo

Journal of Business Analytics, 2024, vol. 7, issue 1, 25-41

Abstract: Empirical studies have discovered that most statistical forecasts in supply chains are subjected to judgemental adjustments during a forecast review. Although such a practice requires significant management effort and frequently reduces forecast accuracy, many organisations prefer this approach as part of their Sales & Operations Planning process. This study aims to identify the optimal policy to achieve significant accuracy improvement from forecast review. We focus on a practical situation where managers periodically review forecasts from the statistical software and compare them with judgemental forecasts from the sales and marketing functions. Managers must decide whether to disregard the judgement and continue with the existing forecast or revise the statistical forecast based on the judgement. To determine the best course of action, we conducted a numerical experiment using data from five supply-chain companies wit more than 12,000-point forecasts. The experiment considered three alternative actions: “do-nothing”, “follow the judgement”, and “simple-average”. Using a causal machine learning method, namely a policy tree, we develop a set of decision rules that maximise the expected accuracy gains given the variation in forecasting features. The result proposes a simple yet effective policy to recommend suitable actions based on two identified key features: “judgment direction” and the “accuracy of statistical forecasts”. The policy was tested against real-world data and achieved remarkable accuracy with roughly a 3–11 percentage points improvement over the baseline. Our findings offer valuable insights for managers to customise their forecast review policy based on their unique environment.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/2573234X.2023.2248203 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjbaxx:v:7:y:2024:i:1:p:25-41

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjba20

DOI: 10.1080/2573234X.2023.2248203

Access Statistics for this article

Journal of Business Analytics is currently edited by Dursan Delen

More articles in Journal of Business Analytics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjbaxx:v:7:y:2024:i:1:p:25-41