Efficient global optimisation for black-box simulation via sequential intrinsic Kriging
Ehsan Mehdad and
Jack Kleijnen ()
Journal of the Operational Research Society, 2018, vol. 69, issue 11, 1725-1737
Abstract:
Efficient global optimisation (EGO) is a popular method that searches sequentially for the global optimum of a simulated system. EGO treats the simulation model as a black-box, and balances local and global searches. In deterministic simulation, classic EGO uses ordinary Kriging (OK), which is a special case of universal Kriging (UK). In our EGO variant we use intrinsic Kriging (IK), which does not need to estimate the parameters that quantify the trend in UK. In random simulation, classic EGO uses stochastic Kriging (SK), but we replace SK by stochastic IK (SIK). Moreover, in random simulation, EGO needs to select the number of replications per simulated input combination, accounting for the heteroscedastic variances of the simulation outputs. A popular method uses optimal computer budget allocation (OCBA), which allocates the available total number of replications to simulated combinations. We replace OCBA by a new allocation algorithm. We perform several numerical experiments with deterministic simulations and random simulations. These experiments suggest that (1) in deterministic simulations, EGO with IK outperforms classic EGO; (2) in random simulations, EGO with SIK and our allocation rule does not perform significantly better than EGO with SK and OCBA.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2017.1409154 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:69:y:2018:i:11:p:1725-1737
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2017.1409154
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().