A cost-sensitive multi-criteria quadratic programming model for imbalanced data
Xiangrui Chao and
Yi Peng
Journal of the Operational Research Society, 2018, vol. 69, issue 4, 500-516
Abstract:
Multiple Criteria Quadratic Programming (MCQP), a mathematical programming-based classification method, has been developed recently and proved to be effective and scalable. However, its performance degraded when learning from imbalanced data. This paper proposes a cost-sensitive MCQP (CS-MCQP) model by introducing the cost of misclassifications to the MCQP model. The empirical tests were designed to compare the proposed model with MCQP and a selection of classifiers on 26 imbalanced datasets from the UCI repositories. The results indicate that the CS-MCQP model not only performs better than the optimization-based models (MCQP and SVM), but also outperforms the selected classifiers, ensemble, preprocessing techniques and hybrid methods on imbalanced datasets in terms of AUC and GeoMean measures. To validate the results statistically, Student’s t test and Wilcoxon signed-rank test were conducted and show that the superiority of CS-MCQP is statistically significant with significance level 0.05. In addition, we analyze the effect of noisy, small disjunct and overlapping data properties on the proposed model and conclude that the CS-MCQP model achieves better performance on imbalanced data with overlapping feature than noisy and small disjunct data.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1057/s41274-017-0233-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:69:y:2018:i:4:p:500-516
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1057/s41274-017-0233-4
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().