EconPapers    
Economics at your fingertips  
 

Real Estate valuation and forecasting in non-homogeneous markets: A case study in Greece during the financial crisis

Antonios K. Alexandridis, Dimitrios Karlis, Dimitrios Papastamos and Dimitrios Andritsos

Journal of the Operational Research Society, 2019, vol. 70, issue 10, 1769-1783

Abstract: In this paper, we develop an automatic valuation model for property valuation using a large database of historical prices from Greece. The Greek property market is an inefficient, non-homogeneous market, still at its infancy and governed by lack of information. As a result modelling the Greek real estate market is a very interesting and challenging problem. The available data cover a wide range of properties across time and include the financial crisis period in Greece which led to tremendous changes in the dynamics of the real estate market. We formulate and compare linear and non-linear models based on regression, hedonic equations and artificial neural networks. The forecasting ability of each method is evaluated out-of-sample. Special care is given on measuring the success of the forecasts but also on identifying the property characteristics that lead to large forecasting errors. Finally, by examining the strengths and the performance of each method we apply a combined forecasting rule to improve forecasting accuracy. Our results indicate that the proposed methodology constitutes an accurate tool for property valuation in a non-homogeneous, newly developed market.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2018.1468864 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:70:y:2019:i:10:p:1769-1783

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2018.1468864

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:70:y:2019:i:10:p:1769-1783