A robust optimization approach to model supply and demand uncertainties in inventory systems
Jie Chu,
Kai Huang and
Aurélie Thiele
Journal of the Operational Research Society, 2019, vol. 70, issue 11, 1885-1899
Abstract:
In this article, we simultaneously consider supply and demand uncertainties in a robust optimization (RO) framework. First, we apply the RO approach to a multi-period, single-station inventory problem where supply uncertainty is modeled by partial supply. Our main finding is that solving the robust counterpart is equivalent to solving a nominal problem with a modified deterministic demand sequence. In particular, in the stationary case the optimal robust policy follows the quasi-(s, S) form and the corresponding s and S levels are theoretically computable. Subsequently, the RO framework is extended to a multi-echelon case. We show that for a tree structure network, decomposition applies so that the optimal single-station robust policy remains valid for each echelon in the tree. We conduct extensive numerical studies to demonstrate the effectiveness of the proposed robust policies. Our results suggest that significant cost benefits can be realized by incorporating both supply and demand uncertainties.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2018.1507424 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:70:y:2019:i:11:p:1885-1899
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2018.1507424
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().