EconPapers    
Economics at your fingertips  
 

Forecasting tourism demand by incorporating neural networks into Grey–Markov models

Yi-Chung Hu, Peng Jiang and Ping-Chuan Lee

Journal of the Operational Research Society, 2019, vol. 70, issue 1, 12-20

Abstract: Tourism demand plays a significant role in the formulation of tourism development policies by governments. While the GM(1,1) is the most frequently used grey prediction model, the Grey–Markov model has been applied to forecast tourism demand because it has advantages compared with the GM(1,1) model when the time series data fluctuate significantly. To further improve the predictive accuracy of the Grey–Markov model, two neural networks (NNs) are considered. One of the NNs is used to build an NNGM(1,1) such that the GM(1,1) does not need to determine the background value, and the other is used to estimate the degree to which a predicted value obtained from the NNGM(1,1) can be adjusted. We applied the proposed model to forecast the number of foreign tourists using historical annual data from Taiwan Tourism Bureau and China National Tourism Administration. The results showed that the proposed model outperforms other Grey–Markov models.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2017.1418150 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:70:y:2019:i:1:p:12-20

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2017.1418150

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:70:y:2019:i:1:p:12-20