Flowshop scheduling with artificial neural networks
Jatinder N. D. Gupta,
Arindam Majumder and
Dipak Laha
Journal of the Operational Research Society, 2020, vol. 71, issue 10, 1619-1637
Abstract:
For effective modelling of flowshop scheduling problems, artificial neural networks (ANNs), due to their robustness, parallelism and predictive ability have been successfully used by researchers. These studies reveal that the ANNs trained with conventional back propagation (CBP) algorithm utilising the gradient descent method are commonly applied to model and solve flowshop scheduling problems. However, the existing scheduling literature has not explored the suitability of some improved neural network training algorithms, such as gradient descent with adaptive learning (GDAL), Boyden, Fletcher, Goldfarb and Shanno updated Quasi-Newton (UQ-N), and Levenberg-Marquardt (L-M) algorithms to solve the flowshop scheduling problem. In this article, we investigate the use of these training algorithms as competitive neural network learning tools to minimise makepsan in a flowshop. Based on training and testing measures, overall results from extensive computational experiments demonstrate that, in terms of the solution quality and computational effort required, the L-M algorithm performs the best followed by the UQ-N algorithm, GDAL algorithm, and the CBP algorithm. These computational results also reveal that the average percent deviation of the makespan from its best solution obtained by using the ANN trained with the L-M algorithm is the least among all examined approaches for the benchmark problem instances.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1621220 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:71:y:2020:i:10:p:1619-1637
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2019.1621220
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().