Ranking intervals for two-stage production systems
Yongjun Li,
Xiao Shi,
Ali Emrouznejad and
Liang Liang
Journal of the Operational Research Society, 2020, vol. 71, issue 2, 209-224
Abstract:
Traditional Data Envelopment Analysis (DEA) models find the most desirable weights for each Decision Making Unit (DMU) in order to estimate the highest efficiency score as possible. Usually, decision-makers are using these efficiency scores for ranking the DMUs. The main drawback in this process is that the ranking based on weights obtained from the standard DEA models ignore other feasible weights, this is due to the fact that DEA may have multiple solutions for each DMU. To overcome this problem, Salo and Punkka (2011) deemed each DMU as a “Black box” and developed a mix-integer model to obtain the ranking intervals for each DMU over sets of all its feasible weights. In many real-world applications, there are DMUs that have a two-stage production system. In this paper, we extend the Salo and Punkka (2011)’s model to more common and practical applications considering the two-stage production structure. The proposed approach calculates each DMU’s ranking interval for the overall system as well as for each subsystem/sub-stage. An application for non-life insurance companies is given to illustrate the applicability of the proposed approach. A real application in Chinese commercial banks shows how this approach can be used by policy makers.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2018.1535267 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:71:y:2020:i:2:p:209-224
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2018.1535267
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().