Identification of credit risk based on cluster analysis of account behaviours
Maha Bakoben,
Tony Bellotti and
Niall Adams
Journal of the Operational Research Society, 2020, vol. 71, issue 5, 775-783
Abstract:
Assessment of risk levels for existing credit accounts is important to the implementation of bank policies and offering financial products. This article uses cluster analysis of behaviour of credit card accounts to help assess credit risk level. Account behaviour is modelled parametrically and we then implement the behavioural cluster analysis using a recently proposed dissimilarity measure of statistical model parameters. The advantage of this new measure is the explicit exploitation of uncertainty associated with parameters estimated from statistical models. Interesting clusters of real credit card behaviours data are obtained, in addition to superior prediction and forecasting of account default based on the clustering outcomes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1582586 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:71:y:2020:i:5:p:775-783
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2019.1582586
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().