EconPapers    
Economics at your fingertips  
 

A parametric programming approach to bilevel optimisation with lower-level variables in the upper level

Henrik C. Bylling, Steven A. Gabriel and Trine K. Boomsma

Journal of the Operational Research Society, 2020, vol. 71, issue 5, 846-865

Abstract: This paper examines linearly constrained bilevel programming problems in which the upper-level objective function depends on both the lower-level primal and dual optimal solutions. We parametrize the lower-level solutions and thereby the upper-level objective function by the upper-level variables and argue that it may be non-convex and even discontinuous. However, when the upper-level objective is affine in the lower-level primal optimal solution, the parametric function is piece-wise linear. We show how this property facilitates the application of parametric programming and demonstrate how the approach allows for decomposition of a separable lower-level problem. When the upper-level objective is bilinear in the lower-level primal and dual optimal solutions, we also provide an exact linearisation method that reduces the bilevel problem to a single-level mixed-integer linear programme (MILP). We assess the performance of the parametric programming approach on two case studies of strategic investment in electricity markets and benchmark against state-of-the-art MILP and non-linear solution methods for bilevel optimisation problems. Preliminary results indicate substantial computational advantages over several standard solvers, especially when the lower-level problem separates into a large number of subproblems. Furthermore, we show that the parametric programming approach succeeds in solving problems to global optimality for which standard methods can fail.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1590132 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:71:y:2020:i:5:p:846-865

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2019.1590132

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:71:y:2020:i:5:p:846-865