Input modelling for multimodal data
Russell C. H. Cheng and
Christine S. M. Currie
Journal of the Operational Research Society, 2020, vol. 71, issue 6, 1038-1052
Abstract:
Multimodal data occurs frequently in discrete-event simulation input analysis, typically arising when an input sample stream comes from different sources. A finite mixture distribution is a simple input model for representing such data, but fitting a mixture distribution is not straightforward as the problem is well-known to be statistically non-standard. Even though much studied, the most common fitting approach, Bayesian reversible jump Markov Chain Monte Carlo (RJMCMC), is not very satisfactory for use in setting up input models. We describe an alternative Bayesian approach, MAPIS, which uses maximum a posteriori estimation with importance sampling, showing it overcomes the main problems encountered with RJMCMC. We demonstrate use of a publicly available implementation of MAPIS, which we have called FineMix, applying it to practical examples coming from finance and manufacturing.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1609887 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:71:y:2020:i:6:p:1038-1052
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2019.1609887
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().