EconPapers    
Economics at your fingertips  
 

Machine learning for healthcare behavioural OR: Addressing waiting time perceptions in emergency care

Daniel Gartner and Rema Padman

Journal of the Operational Research Society, 2020, vol. 71, issue 7, 1087-1101

Abstract: Recent research has discovered links between patient satisfaction and waiting time perceptions. We examine factors associated with waiting time estimation behaviour and how it can be linked to patient flow modelling. Using data from more than 250 patients, we evaluate machine learning (ML) methods to understand waiting time estimation behaviour in two emergency department areas. Our attribute ranking and selection methods reveal that actual waiting time, clinical attributes, and the service environment are among the top ranked and selected attributes. The classification precision for the true outcome of overestimating waiting times reaches almost 70% and 78% in the waiting area and the treatment room, respectively. We linked the ML results with a discrete-event simulation model. Our scenario analysis reveals that changing staffing patterns can lead to a substantial drop-off in overestimation of waiting times. These insights can be employed to control waiting time perceptions and, potentially, increase patient satisfaction.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1571005 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:71:y:2020:i:7:p:1087-1101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2019.1571005

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:71:y:2020:i:7:p:1087-1101