Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty
Ran Fang,
Huchang Liao,
Jian-Bo Yang and
Dong-Ling Xu
Journal of the Operational Research Society, 2021, vol. 72, issue 1, 130-144
Abstract:
As a multi-criteria decision-making (MCDM) method, the evidential reasoning (ER) approach can deal with uncertainties that are resulted from the limited knowledge and experience of experts. Due to the lack of information in the decision-making process, experts usually cannot give quantitative evaluations, but can only express their views with linguistic terms. It is usually impossible for experts to give accurate linguistic terms since they may hesitate among several linguistic terms or interval ones. In addition, experts may have different preferences for different linguistic evaluations. To fully express the evaluations, the probability can be introduced to model the preferences of experts. In this study, we propose the generalised probabilistic linguistic term set (G-PLTS) to represent the evaluation information with various linguistic forms. Then, the ER approach is investigated in the environment with G-PLTSs. Besides, a gained and lost dominance score (GLDS) method is utilised to rank the alternatives, forming an integrated method, which we call the generalised probabilistic linguistic evidential reasoning (GPLER) approach, to solve the MCDM problems with several uncertainties. Finally, we apply this method to the screening of high-risk population of lung cancer to verify the effectiveness of the proposed method.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1654415 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:72:y:2021:i:1:p:130-144
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2019.1654415
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().