EconPapers    
Economics at your fingertips  
 

Measuring the efficiency of two-stage network processes: A satisficing DEA approach

Saber Mehdizadeh, Alireza Amirteimoori, Vincent Charles, Mohammad Hassan Behzadi and Sohrab Kordrostami

Journal of the Operational Research Society, 2021, vol. 72, issue 2, 354-366

Abstract: Regular network data envelopment analysis (DEA) models deal with evaluating the performance of a set of decision-making units with a two-stage construction in the context of a deterministic data set. In the real world, however, observations may display a stochastic behavior. To the best of our knowledge, despite the existing research done with different data types, studies on two-stage processes with stochastic data are still very limited. This article proposes a two-stage network DEA model with stochastic data. The stochastic two-stage network DEA model is formulated based on the satisficing DEA models of chance-constrained programming and the leader–follower concepts. According to the probability distribution properties and under the assumption of the single random factor of the data, the probabilistic form of the model is transformed into its equivalent deterministic linear programming model. In addition, the relationship between the two stages as the leader and the follower, respectively, at different confidence levels and under different aspiration levels, is discussed. The proposed model is applied to a real case concerning 16 commercial banks in China in order to confirm the applicability of the proposed approach.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2019.1671151 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:72:y:2021:i:2:p:354-366

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2019.1671151

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:72:y:2021:i:2:p:354-366