An exact algorithm for small-cardinality constrained portfolio optimisation
David I. Graham and
Matthew J. Craven
Journal of the Operational Research Society, 2021, vol. 72, issue 6, 1415-1431
Abstract:
Real-world portfolio optimisation problems are often NP-hard, their efficient frontiers (EFs) in practice being calculated by randomised algorithms. In this work, a deterministic method of decomposition of EFs into a short sequence of sub-EFs is presented. These sub-EFs may be calculated by a quadratic programming algorithm, the collection of such sub-EFs then being subjected to a sifting process to produce the full EF. Full EFs of portfolio optimisation problems with small-cardinality constraints are computed to a high resolution, providing a fast and practical alternative to randomised algorithms. The method may also be used with other practical classes of portfolio problems, complete with differing measures of risk. Finally, it is shown that the identified sub-EFs correspond closely to local optima of the objective function of a case study evolutionary algorithm.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2020.1718019 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:72:y:2021:i:6:p:1415-1431
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2020.1718019
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().