EconPapers    
Economics at your fingertips  
 

Assessing road network vulnerability: A user equilibrium interdiction model

Stefano Starita and Maria Paola Scaparra

Journal of the Operational Research Society, 2021, vol. 72, issue 7, 1648-1663

Abstract: Road networks are vulnerable to natural and man-made disruptions. The loss of one or many critical links of the network often leads to increased traffic congestion. Therefore, quantitative models are necessary to identify these critical assets so that actions can be taken by decision makers to mitigate the impact of disruptions. This paper proposes an optimisation model to identify the set of arcs that, when lost, results in the worst congestion under user equilibrium traffic. The model is formulated as a bi-level non-linear problem. The challenging formulation is solved via a customised version of Greedy Randomised Adaptive Search Procedure (GRASP) meta-heuristic. Computational experiments are run on a dataset of artificial grids and managerial insights are provided based on popular Sioux and Berlin network case-studies.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2020.1740621 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:72:y:2021:i:7:p:1648-1663

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2020.1740621

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:72:y:2021:i:7:p:1648-1663