Allocating a fixed cost across decision-making units with undesirable outputs: A bargaining game approach
Feng Li,
Yue Wang,
Ali Emrouznejad,
Qingyuan Zhu and
Gang Kou
Journal of the Operational Research Society, 2022, vol. 73, issue 10, 2309-2325
Abstract:
Allocating a fixed cost among a set of peer decision-making units (DMUs) is one of the most important applications of data envelopment analysis. However, almost all existing studies have addressed the fixed cost allocation (FCA) problem within a traditional framework while ignoring the existence of undesirable outputs. Undesirable outputs are neither scarce in various production activities in real world applications nor trivial in efficiency evaluation and subsequent decision making. Motivated by this observation, this article attempts to explicitly extend the traditional FCA problem to situations in which DMUs are necessarily involved with undesirable outputs. To this end, we first investigate the efficiency evaluation of DMUs considering undesirable outputs based on the joint weak disposability assumption. Then, flexible FCA schemes are considered to revisit the efficiency evaluation process. The results show that feasible allocation schemes exist such that all DMUs can be simultaneously efficient. Furthermore, we define the comprehensive satisfaction degree and develop a satisfaction degree bargaining game approach to determine a unique FCA scheme. Finally, the proposed approach is tested with an empirical study of banking activities based on real conditions.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.1981781 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:10:p:2309-2325
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2021.1981781
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().