Gradient boosting survival tree with applications in credit scoring
Miaojun Bai,
Yan Zheng and
Yun Shen
Journal of the Operational Research Society, 2022, vol. 73, issue 1, 39-55
Abstract:
Credit scoring plays a vital role in the field of consumer finance. Survival analysis provides an advanced solution to the credit-scoring problem by quantifying the probability of survival time. In order to deal with highly heterogeneous industrial data collected in Chinese market of consumer finance, we propose a nonparametric ensemble tree model called gradient boosting survival tree (GBST) that extends the survival tree models with a gradient boosting algorithm. The survival tree ensemble is learned by minimising the negative log-likelihood in an additive manner. The proposed model optimises the survival probability simultaneously for each time period, which can reduce the overall error significantly. Finally, as a test of the applicability, we apply the GBST model to quantify the credit risk with large-scale real market datasets. The results show that the GBST model outperforms the existing survival models measured by the concordance index (C-index), Kolmogorov–Smirnov (KS) index, as well as by the area under the receiver operating characteristic curve (AUC) of each time period.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.1919035 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:1:p:39-55
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2021.1919035
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().