EconPapers    
Economics at your fingertips  
 

Multihorizon discrete time survival models

Joseph L. Breeden and Jonathan Crook

Journal of the Operational Research Society, 2022, vol. 73, issue 1, 56-69

Abstract: The new accounting standards of CECL for the US and IFRS 9 elsewhere require predictions of lifetime losses for loans. The use of roll rates, state transition and “vintage” models has been proposed and indeed are used by practitioners. The first two methods are relatively more accurate for predictions of up to one year, because they include lagged delinquency as a predictor, whereas “vintage” models are more accurate for predictions for longer periods, but not short periods because they omit delinquency as a predictor variable. In this paper we propose the use of survival models that include lagged delinquency as a covariate and show, using a large sample of 30 year mortgages, that the proposed method is more accurate than any of the other three methods for both short-term and long-term predictions of the probability of delinquency. We experiment extensively to find the appropriate lagging structure for the delinquency term. The results provide a new method to make lifetime loss predictions, as required by CECL and IFRS 9 Stage 2.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2020.1777907 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:1:p:56-69

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20

DOI: 10.1080/01605682.2020.1777907

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald

More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tjorxx:v:73:y:2022:i:1:p:56-69